Active layers of high-performance lead zirconate titanate at temperatures compatible with silicon nano- and microelecronic devices

نویسندگان

  • Iñigo Bretos
  • Ricardo Jiménez
  • Monika Tomczyk
  • Enrique Rodríguez-Castellón
  • Paula M. Vilarinho
  • M. Lourdes Calzada
چکیده

Applications of ferroelectric materials in modern microelectronics will be greatly encouraged if the thermal incompatibility between inorganic ferroelectrics and semiconductor devices is overcome. Here, solution-processable layers of the most commercial ferroelectric compound ─ morphotrophic phase boundary lead zirconate titanate, namely Pb(Zr0.52Ti0.48)O3 (PZT) ─ are grown on silicon substrates at temperatures well below the standard CMOS process of semiconductor technology. The method, potentially transferable to a broader range of Zr:Ti ratios, is based on the addition of crystalline nanoseeds to photosensitive solutions of PZT resulting in perovskite crystallization from only 350 °C after the enhanced decomposition of metal precursors in the films by UV irradiation. A remanent polarization of 10.0 μC cm−2 is obtained for these films that is in the order of the switching charge densities demanded for FeRAM devices. Also, a dielectric constant of ~90 is measured at zero voltage which exceeds that of current single-oxide candidates for capacitance applications. The multifunctionality of the films is additionally demonstrated by their pyroelectric and piezoelectric performance. The potential integration of PZT layers at such low fabrication temperatures may redefine the concept design of classical microelectronic devices, besides allowing inorganic ferroelectrics to enter the scene of the emerging large-area, flexible electronics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrigendum: Active layers of high-performance lead zirconate titanate at temperatures compatible with silicon nano- and microelectronic devices

The original version of this Article contained an error in the title of the paper, where the word " microelectronic " was incorrectly given as " microelecronic ". This has now been corrected in the PDF and HTML versions of the Article. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in th...

متن کامل

Ferroelectric Lead Zirconate Titanate and Barium Titanate Nanotubes

Wetting of the pore walls of porous templates is a simple and convenient method to prepare nanotubes. Ferroelectric lead zirconate titanate and barium titanate nanotubes were fabricated by wetting of porous silicon templates of polymeric precursors. The ferroand piezoelectric properties of an individual ferroelectric either of a PZT or a BaTiO3 nanotube were electrically characterized by measur...

متن کامل

Lead zirconate titanate nanowire textile nanogenerator for wearable energy-harvesting and self-powered devices.

Wearable nanogenerators are of vital importance to portable energy-harvesting and personal electronics. Here we report a method to synthesize a lead zirconate titanate textile in which nanowires are parallel with each other and a procedure to make it into flexible and wearable nanogenerators. The nanogenerator can generate 6 V output voltage and 45 nA output current, which are large enough to p...

متن کامل

Lanthanide-Assisted Deposition of Strongly Electro-optic PZT Thin Films on Silicon: Toward Integrated Active Nanophotonic Devices.

The electro-optical properties of lead zirconate titanate (PZT) thin films depend strongly on the quality and crystallographic orientation of the thin films. We demonstrate a novel method to grow highly textured PZT thin films on silicon using the chemical solution deposition (CSD) process. We report the use of ultrathin (5-15 nm) lanthanide (La, Pr, Nd, Sm) based intermediate layers for obtain...

متن کامل

Microstructural and compositional analysis of strontium-doped lead zirconate titanate thin films on gold-coated silicon substrates.

This article discusses the results of transmission electron microscopy (TEM)-based characterization of strontium-doped lead zirconate titanate (PSZT) thin films. The thin films were deposited by radio frequency magnetron sputtering at 300 degrees C on gold-coated silicon substrates, which used a 15 nm titanium adhesion layer between the 150 nm thick gold film and (100) silicon. The TEM analysis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016